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The flow and heat transfer in a three-dimensional boundary layer when a compressible gas flows around a model body of complex 
shape at angles of attack ct up to 30 °, and around a spherically blunted cone when ct --- 10 ° are investigated both on the divergence 
line in the plane of symmetry of the body and on the whole surface. Full and simplified formulations with the corresponding 
systems of equations are given. Use is made of analytic and numerical methods for calculating the equations of three-dimensional 
laminar and turbulent 'boundary layers and data concerning the external inviscid flow and the geometry of the body. Particular 
attention is paid to the following problems: analysis of the system of equations in cases where it call be simplified, the closure 
of the averaged boundsiy-layer equations under turbulent conditions, the choice of the system of curvilinear coordinates, and 
an analysis of the effect of the governing parameters on the appearance of "separation" domains, characteristic zones and the 
lines of divergence and[ convergence on the surface. 

When a compress~le gas flows around a complex-shaped body at an angle of attack, a three-dimensional cross- 
flow occurs in the l~3undary layer which, to a sjotmifieant extent, determines the magnitudes of the local friction 
and the heat flux on the surface in a number of flow domains. The intensity of the secondary flows depends 
on the three-dimen,donal form of the configuration of the body and the value of the angle of attack. It can 
reach high values even in the case of small angles of attack, and the boundary layers which are formed are 
substantially three-dimensionaL A detailed exposition of the formulations of a number of three-dimensional 
problems and of methods of solving them analytically and numerically for laminar and turbulent flows can be found 
in [1, 2].¢ 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Making the com'entional assumptions of boundary-layer theory and neglecting the effect of the normal 
Reynolds stresses, the system of equations for the mean characteristics of a three-dimensional boundary 
layer in a compressible flow of homogeneous perfe~ gas in a ~trvilinear system of coordinates ~, 11, 4, 
associated with th,: surface of the body ~ = 0 around which the flow is o~urring, has the form 

a~,t, ~ , ,  ) o~t, ~/~,~ ,J 47~(p,,):o 
U 0U W OU OU ~, A 4 I 0 ( 0u 

~l-i'O~+--'~222-~+tl~-'~ +AIu-+A2w2+A3uw=-+" p 7~I~-P<~'~"> I: 
u Ow w Ow ~w 1 8 (  ~w ) 4- - - - +  = ~  _ I~"-" ' u " ~ +  niu2 + n2w2 + n3uw B4 + p(W''O') 

u Oh w Oh Oh 1 2 [ ' •  Oh , , . ]  >j+ 
+_.. w 7 

p4g,,0~ p g4~7~ pLt0;)+2c°sv°~+t0;)]  

(1.1) 

?PrikL Mat Mekh. Vol. 59, No. 1, pp. 109-120, 1995. 
gAiso see: ALEKSIN V. A. and SHEVELEV Yu. D., Numerical investigation of three-dimensional turbulent boundary layers. 

Methods of calculatio~a. Preprint No. 147, Inst. Problem. Mekh., Akad. Nauk SSSR, 1980. 
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( bu bw I . . . .  low Ou ) -<,,',, '>  + osvo ,, ,L + osvo 

p : pRT, Op/O~ : 0 

(g33=1, g31=g32=0, c o s ~ o = g l 2 / ~ ,  g=gtlg22-g22) 

We have assumed that terms containing fluctuations in the density, viscosity and thermal conductiv- 
ity are small compared with terms containing their mean values. The first equation of system (1.1) is 
the equation of continuity, the second and third are the equations for the momentum in a projection 
onto the curvilinear coordinates ~ and 11, and the fourth equation is the heat flux equation. Here, ~ and 
11 are directed along the surface and ~ is directed along the normal to the surface, ~ is measured along 
the generatrices of the body while 11 is measured from the windward plane of symmetry in an anti- 
clockwise direction. The static pressurep is a function of ~ and 11. In the calculations, it is assumed that 
IX = ~(h/he) ®, Z = ~(h/he) ~, to = 0.75, u, w and a) are the longitudinal, transverse and normal components 
of the velocity in the ~, 11 ~ system, g# are the components of the metric tensor, h is the enthalpy, p is 
the density, T is the temperature, Ix and Z are the coefficient of viscosity and the thermal conductivity, 
c v is the heat capacity at constant pressure, R is the gas constant, the subscript e refers to the outer 
edge of the boundary layer, w refers to the values at the wall and t refers to a turbulent regime. The 
coefficients Ai and Bi (i = 1 . . . .  ,4) are determined by the geometry of the body surface and by the 
parameters of the external inviscid flow• 

The following boundary conditions are imposed at the surface 

~=0 ,  u = w = O ,  p~=(p~)~=F(~ , r l )  

Fl[~,rl, hw,(OhlO~)w]=O: hol Ho=tw(~,~) or q w  = qw(~,~l )  

(1.2) 

The conditions 

~ :-->oo, u'--> uo w'--> We, h--~ h~ (1.3) 

are satisfied at the outer edge of the boundary layer where the distributions of the velocity components 
ue(~, 11), we(~, rl) and of the enthalpy he(~, 11) are known. The latter are found from the equations of 
gas dynamics or determined using experimental data. 

The initial conditions are specified in such a manner as to ensure the existence and uniqueness of 
the solution of the problem. For this purpose, it is necessary to specify the initial velocity and enthalpy 
profiles in a certain domain D. This domain of initial data must satisfy the condition that all of the 
characteristic directions along which perturbations are generated depart from it into the calculated flow 
domain, which is the zone of influence of the initial data domain (the Retz effect principle [3]). The 
flow beyond the limits of the zone of influence is not subject to calculation since other initial data have 
an action on it and it depends on e flow outside this zone [4]. In the case when there is a leading 
stagnation point, the initial conditions are determined from the solution in the neighbourhood of this 
point. 

2. THE MODELLING OF T U R B U L E N C E  

We shall use the concept of turbulent viscosity. Isotropic transport coefficients, the basis of which is 
the postulate that the directions of the tangential stress vectors x(% x2) and G ( ~ / ~ ,  ~v/8~) coincide 
[5], are the most widely used. Different versions of models of the anisotropic coefficients are well known 
[61. 

Below, we use a model of effective transport coefficients (see the second footnote on p. 99) where 
the total shear stresses xl, x2 along the ~ and 11 axes, which include the shear stresses and the Reynolds 
stresses --~u'~'), -~w'aY~ and, also, the total heat flux q are defined as follows: 

O U  , , , ~ O U  , O W  ~ , , x O W  

~, Oh ~x Oh 
q . . . .  p(h'aJ') = - - - -  

Cp 0~ cp 0~ 

(2.1) 
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In introducing effective turbulent transport coefficients, it is assumed that the turbulent coefficient 
of viscosity is isotropic. It follows from this assumption that the effective longitudinal and transverse 
coefficients are equal: ~tr.,1 - ~t~,2 = ttz, and the direction of the total tangential stress x coincides with 
the direction of G. It also follows that the Prandtl mixing length L is a scalar function and is invariant 
under a coordinate transformation: L1 = L 2  - L. 

Extension of the Prandtl hypothesis to a three-dimensional boundary layer yields the extension of 
the Prandtl formula [5] 

! x' = pL21 G I (2.2) 

For a non-orthogonal, curvilinear system of coordinates, which is normally associated the body surface, 
we have 

,G,- +2cos,0 -  

The coefficient of effective viscosity ~tz depends on the local Reynolds numbers ReA (ReA = I~/g) 
and Re, 

- 1  2 2 2 tt z - ~b, lx - ~ tt Re A { R e  A - Re. + [(Re, - Re2a )2 + 4 Re,2ReA ])~ } (2.3) 

The effective thermal conductivity is defined by analogy with the effective coefficient of viscosity 

~ = ~b,F(Re A, Re,, Pr, Pr, ) (2.4) 

F - 1 + (Pr/Pr t -  1)Re 2 {Re, 2 (1 + , ,  R % / R e ,  2)}-I 

Laminar and turbulent Prandfl numbers are defined using the laminar and turbulent transport co- 
efficients" Pr = c ~ r ~  Pr t = C ~ The values of Pr and Pr t are assumed to be constant in the numerical . *  , p • 

calculatlous: Pr = 0.7 and Prt = 0. 
The mixing length L is determined by the empirical function 

L = [B,6(1)(~,,, k, ~JS), (2.5) 

2k ~ 2k . [ ,_oxp-- - l l  I[,  ÷ oxp(-o,7,--ll 

where k --- 0.4 is the Karman constant, [L = 0.1 and 8 is the thickness of the boundary layer determined 
by the velocity pn)lile U. 

The magnitude of local critical Reynolds number Re. depends on a number of parameters and, in 
+ + 

particular, on the pressure gradient parameter P , the surface permeability parameter ~ w, the Maeh 
number Me and Reynolds number Re0 

Re, Re, (Re 0,P+ ÷ " "w'Me) ( 2 . 6 )  
+ p+-vp-l~.3(Ue'lUel-l 'V pe ), ~w-~wllO, ,  1 o , - ~ w / p  

In this paper, we use relation (2.6) in the form which has been previously used when calculating heat 
transfer in two-dimensional flows when there are appreciable longitudinal pressure gradients and surface 
permeability 

Re, = Re,.0. {I + a [ ~  + bP + I (1 + c~+w)]} 

where a, b and c are constants which are equal to 5.15, 5.86 and 5.00, respectively. 
The number Re0 is defined using Ue, ve and the momentum thickness 01 

R%- -U'°' p" II- Id  (2.7) 
v~ ' o p,U, [, u , j  
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The quantity Re.,o determines the transition from a laminar regime to turbulent conditions along 
the surface of the body. The dependence of Re.,0 on Re0 which has been previously suggested (see the 
footnote on p. 99) is used. 

In the general ease Re.,o is a function of many parameters which describe the transition process in 
the boundary layer. Among these, one can pick out such factors as the degree of turbulence of the free 
stream Tu**, the Math and Reynolds numbers, the longitudinal pressure gradient and surface permeability 
parameters, and the temperature factor. 

In the case of three-dimensional boundary flows, complex turbulence models contain a different 
number of additional equations [5-7]. The biparametric K -  e model for the turbulence kinetic energy 
K and its rate of dissipation e involves two equations like the model in [7] (with additional equations 
for the Reynolds stresses -p(u%'}, -p(w"o'). The three-parameter model consists of the equations for K 
and the Reynolds stresses xn, xt2, and it is not assumed in this case that the turbulence characteristics 
have isotropic properties nor that the directions of the vectors x and G are the same. Near-wall damping 
functions, similar to those used in algebraic models, are introduced into the coefficients of the equations 
of certain of the terms in order to describe the properties of the near-wall flow. 

An analogy between the processes of heat and momentum transfer, which leads to the need to 
introduce the turbulent Prandtl number Prt, is used to model turbulent heat transfer. In a number of 
cases, there is a complex dependence of the distribution of P r  t o n  the properties Of the gas and the 
boundary conditions which can be taken into account using just a single additional equation for the 
turbulent heat flux qt = -p(h'C) which is similar to the equation introduced in [8] for a class of two- 
dimensional boundary-layer flows. 

3. S IMPLIFIED FORMULATIONS OF THE PROBLEM 

When solving laminar and turbulent three-dimensional boundary-layer problems, the question arises 
of how to find the boundary conditions on the divergence lines. Here, the problem reduces to solving 
a system of ordinary difference equation. The solution of the singularity of the critical point is the first 
step. 

In the case of flow around a blunt body which has a plane of symmetry and the velocity vector of the 
free stream lies in this plane, a Cartesian system of coordinates is introduced with the Z-axis directed 
along the body and the XOZ-plane lying in the plane of symmetry of the body. The system of coordinates 
of the boundary layer, (~, "q, ~), is normally associated with the surface. The normal to the body surface 
has the coordinates n(¥1, ¥2 ¥3) and the relationship between the Cartesian and boundary-layer systems 
of coordinates can be written in the form 

x = rw(~,rl)cosrl + ¥1~, y = rw(~,rl)sinTi + ~2~, Z = ~(~,1]) + ¥3~ (3.1) 

He.re, r~(~, rl) is the distance from the Z-axis to the surface of the body. Ifx / Cartesian coordinates 
and ~t are the coordinates of the boundary-layer system, then expressions can be obtained from (3.1) 
for the components of the metric tensorg in the boundary-layer system of coordinates in terms of the 

. . ~ P q  . 

components m the Cartesian system of coordmates g~ 

, /~ i  a.rj (3 .2)  g' '  = & ae,"--:" a~  

In the neighbourhood of the plane of symmetry, which forms the divergence line when intersecting 
the body surface, the functions occurring in the system of equations of a three-dimensional boundary 
layer satisfy the condition f(-TI) = f(rl). Consequently, they can be written in the form 

f=fll  +f2r12 + O(TI 4) 0 e= p, u, v, p, H, rw, X) (3.3) 

The relationship w(-rl) = -w(TI) must be satisfied in the case of the projection of the velocity vector 
onto the rl-axis, and therefore 

w = will + w ~  3 + 0(115) (3.4) 

Using (3.2) and (3.3), the metric of the body surface in the neighbourhood of the plane of symmetry 
can be represented in the form 
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rw C~, ~l)" r° (~) + r2 (~)TI 2 + 0(~] 4), Z(~, TI) "Zo (~) + Z2 (~)q2 + O(TI 4 ) 

g12 " 21q X2 d~ 

g ' l  glig22 

The coefficientsAi, Bi (i = 1, 2, 3, 4), ocourfing in the equations of motion of boundary-layer system 
(1.1), which depend on the metric are 

A I --0(I] 2) 

dr~ r2 r.O 2 c, - = A ° + o(n), o(n) /[2 "2 X2 + ~j w (w) %/-G) +O(n) A3- 

2n/a, ° 

= o(n), B3 = r;, 4-0) + o(n) = ~o + o(n)  

7 ~ " ~  ° ( n  2)' s4 ~. t ~ a~ +'-~r~')'-~ -p2 +0012) 

Consequently, tl~e system of equations of the three-dimensional boundary layer (1.1) in the 
neighbourhood of the plane of symmetry can be written, after dropping the small terms in ~1, as 

°(poUo r°) ~-~[ °°(7o) ] O~ + P°Wl + r.~ = 0 

~'~oPo Ouo Ou o . 0 { OUo~ 

i ~ 0  OWl 
+ ~'~ + ~o ~ -  + ¢~o ~ + ~°~o~,-  

~ 0~" ~L~L~~ '+<°~ 

1 0 ( Ow,/ (3.6) 
npo O~ ] 

follows: 

We will now specify the pressure on the body surface using Newton's formula 

p = (n • e . / I  ~ .  I) 

For the components of the normal n(¥1, ¥2 ¥3), we have 

• i = ' l ( c ° s T l  +~rw sinTl'l, 

Lr. On) 

I /)r w l_(sinTl Or w cos l] ¥3 = 
¥2 = Gr ~, ~ r w /' G~ ~z 

The unit vector J~n the direction of the vector t , .  has the components (-sin a, O, cos a), where a is 
the angle of attack, Hence 
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1_1_(_ Or~ cos c~ _ sin acos  ~ ~rw sin ~_~sin ° q  2 
P = G r (  aZ ~'q r w ) 

In the neighbourhood of the plane of symmetry 

2 0 2 -1 

(~r ° . I I i+(3r:l  ] 
p = k--~- z cost~ +sin O~)L t, az) J + p2112 + O(114 ) 

In the case of the coordinates which have been introduced, the equality 

(3.7) 

~=~ Vl+(ar~ laz)2dz, rl=arctg(ylx) 
0 

is satisfied on the body surface and hence 

Consequently 

P0 = cos2 (X + 2 c°s °tsin tz drw° dxO + sin2 °~ a~a~ (3.8) 

It follows from the equations of motion of system (3.6), when ~ -~ ~ on the outer edge of the boundary 
layer, that 

uf, d~  = _  l_ap o 
of, a~ 

'w~) 2 _ 2 [1 (dXo dr °r2~dp o ] 
r. J 

(3.9) 

The solution of  system (3.9) in the neighbourhood of the critical point ~ = ~¢~ is sought in the form 
u~ = a(~ - ~xr), w~ = b(~ - ~xr). We then obtain 

a 2 ( ~ _ ~ . )  = 1 dpo 
pf, a~ 

(3.10) 

Let us assume that the leading part of  the body is a sphere, the centre of which lies in the Z-axis and 
that the critical point falls in the spherical domain. In this case, Z = R[1 - cos(~R)], rw = R sin(~/R), 
where R is  the radius of the sphere. 

p = cos2 (~ /R  - ct), p2= - s i n  ct s i n ( ~ R ) c o s ( ~ R  - c 0  

is obtained from (3.7) for the neighbourhood of the plane of symmetry of the sphere. 
The system of equations (3.10) for a sphere takes the form 

a 2 = 2 / (p~R 2) 

ab . . . .  + b 2 (~  - ~cr)2 ab 2 s in 2 ct 
t ~ - ~ c r )  ~ ,  + ( ~ -  ~c,) 2 r w R~'ga = _ e"'77To'--_ P0rQ 

(3.11) 
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It is clear from the second equation that, when a ~ 0, the magnitude of b is of the order of c / ( ~  - 

~r). Consequently, the indeterminacy in the neighbourhood of the critical point is only solved when 
the origin of coordinates coincides with the critical point, that is, when a = 0. In this case, the system 
has the solution a = R-l~(2/p~), b = 0. 

If  a perfect gas flLows around the body, then 

a -. R -I ~ ( 2  + (¥ - 1)M~ 2 ) / (TM~ 2 ) 

4. T H E  C O M P U T A T I O N A L  M E T H O D S  

A numerical melLhod of calculating the equations of a three-dimensional boundary layer is used in 
order to estimate the thermal state of the surface of the body and to find the segments where the most 
intensive heat transfer occurs. The scheme in [9] is the foundation of this method. This ensures fourth- 
order accuracy with respect to the normal coordinate. In this case, the grid is specified as being non- 
uniform and depen,~ on the structure of the turbulent boundary layer. Boundary conditions of a general 
form are used, without changing the order of accuracy of the integration and the uniformity of the 
computational algorithm. Depending on the intensity of reorganization of the flow, non-uniform inte- 
gration intervals m'e also specified in directions tangential to the surface. A method of tracking the 
direction of the flow velocity is also used. Here, directed differences, which depend on the sign of the 
transverse component of the velocity w, are used. The positions of the divergence and convergence lines 
and the surfaces of flow separation are not known in advance and are determined during the computa- 
tional process. Methods, involving algorithms in which conditions are imposed which take account of 
the direction of the velocity vector, have been described in [10]. 

When studying the flow around bodies of complex shape, the problem of setting up adequate mathe- 
matical model of the surface of the actual body arises. Here, the requirements concerning the description 
of the geometry vary depending on the particular problem. In problems of external aerohydrodynamics, 
the geometry of a body has certain general properties: it is possible to pick out a principle direction, 
that is, the direction of motion, and the body has a plane of symmetry. 

In this paper, we use an analytical specification of the surfaces of bodies around which flows occur. 
In this case, the initial data are approximated by a set of elementary surfaces which are described by 
algebraic functions of not higher than the third order.t A finite number of parameters with a physical 
meaning (the sweep angle, width of the fuselage, etc.) determine the form of these functions. Smooth 
joining of the component elementary pieces of the surfaces is carried out automatically. Here, the metric 
of the surface, the Christoffel symbols and the normal are found the required degree of smoothness. 
The advantage of this approach is the minimum amount of computer memory and computer time 
required. A change', in the parameters of the body does not present any particular difficulties. 

The external shape of a model body, the surface of which has been constructed using the method 
described, is shown in Fig. 1. The geometry of a more complex body, which is defined by the values of 
14 parameters, is shown in Fig. 2. The shape of the family of bodies being considered is characterized 
by a spherical bluntness which transforms into a conical surface. There may be such elements as a cabin 
on the leewar3 side and wings. 

Tk, e choice of the curvilinear system of coordinates, which is normally associated with the surface of 
the body, is a key step in solving the equations of the three-dimensional boundary layer on bodies of 
complex shape. The possibility that the computational method will describe the flow pattern with 
sufficient accuracy largely depends on this. When investigating the flow around bodies with spatial 
configurations at aagles of attack, the problem of obtaining such an adequate description of the flow 
properties by solving partial differential equations is complicated in view of the need to make the grid 
points denser in a number of flow domains where the functions are undergoing rapid changes. 

Several systems of coordinates [2] are employed here for calculating the boundary-layer character- 
istics over the whole body surface. A system of coordinates associated with a spherical system of 
coordinates (R, 0, cp) the origin of which coincides with the centre of the spherical bluntness is used in 
the neighbourhood of the leading critical point. A system of coordinates, corresponding to a cylindrical 
system of coordinates, is introduced on the remaining part of the surface. 

tKAZEIKIH S. N., S]EMUSHKINA E. V. and SHEVELEV Yu. D., Some methods of calculating and visualizing the geometry 
of a complex shape. Preprint No. 286, Inst. Problem Mekh. Akad. Nauk SSSR, 1987. 
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Fig. 1. 

Fig. 2. 

The solutions of the equations of the axially symmetric boundary layer serve as the initial conditions 
for calculating the equations of the three-dimensional boundary layer for the remaining part of the 
surface of bluntness. As the angle 0 is increased, the shape of the body begins to differ from spherical, 
and the flow gradually acquires a spatial character. In order to calculate the flow and heat transfer 
parameters, it becomes necessary to use the three-dimensional boundary-layer equations for which a 
boundary-layer system of coordinates (0", ~*, 4) is introduced, where 0* = 0, ~* = tp and ~ is normal 
to the surface, the centre of which coincides with the centre of the spherical bluntness and the axis of 
which is inclined at a variable angle 13(0) to the Z-axis of the Cartesian system of coordinates (X, Y, Z). 
The system of coordinates (0", 9", 4) is directly associated with the rotating spherical system of 
coordinates (R, 0, 9).t The coordinate transformation formulae 

x ffi R(0*, tp* ) sin 0* cos cp* cos 1~ - R(0*, tp*) cos 0* sin 13 + ~ap i 

y ffi R(0*, cp* ) sin 0* sin q~* + ~al~ 2 (4.1) 

z ffi ~0(0)R(0*,q)*)cos0* cos~* + R(0*,tp*)sin 0* coscp* sin 13 +~V3 

are used to recalculate the components of the velocity vector of an inviscid flow from the system of 
coordinates (R, 0, tp) into the boundary-layer system of coordinates (0", tp*, ~) with the specified functions 

tPOGORELOV N. V. and SHEVELEV Yu. D., Numerical investigation of supersonic flow around the leading section of 
blunt bodies at large angles of attack. Preprint No. 175., Inst., Problem Mekh. Akad. Nauk SSSR, 1981. 
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Here  R(0*, (p*) is the distance from the centre of  the spherical system of coordinates to the surface 
of the body and ~ is the origin of  the centre of  the system of coordinates (R, 0, tp). 

5. R E S U L T S  OF C A L C U L A T I O N S  

The three-dimensional laminar boundary layer on the body shown in Fig. 1 was investigated for M** ffi 6 and 
a ffi 5* using the an~Llytie method of successive approximations [11] and a numerical method. The conditions at 
the outer edge were taken from calculations of the supersonic flow around bodies by an inviseid perfect gas. The 
nose section of the b(xiy was represented by a spherical bluntness. In the cross-section, two semi-ellipses are joined 
from the windward side by a straight line, that is, the bottom section of the body is planar. On the leeward side, 
there is a cabin and l~ae wings are located at a sufficient distance from the origin. 

The investigation enables us to draw a number of conclusions for bodies of similar type. Domains with an S- 
shaped velocity profile are distinguished. The divergence lines of the gas flow appear in the neighbourhood of the 
lateral edges, and the geometric lines of symmetry will not necessarily be divergence lines. Gas from this line spreads 
out to the leeward side and to the plane of symmetry over the whole thickness of the boundary layer. A change 
in the curvature of l~te body surface at the base of the wings causes a pronounced perturbation of the flow. On 
the leeward side, the flow around the cabin attracts attention. The streamlines, on bending around the protruding 
section of the cabin, converge to a single point. This gas flow is determined by the pressure distribution in the 
neighbourhood of the cabin. 

The local maximum in the value of the coefficient of friction and the heat flux, which lies near the lateral edge, 
corresponds to a dive~rgence line on the windward side. The large pressure drop, due to the occurrence of pronounced 
compression and rarefaction zones, scatters gas from the edge across the wing. The appearance of the local maximum 
in the coefficients of l~etion and heat flux on the wall is explained by this and, moreover, this maximum may exceed 
the local maximum close to the edge of the wing. 

A comparison of the relative value of the heat transfer cx~fficient (St..)r~l = St/St= (~ ffi 1) obtained analytically 
(the solid lines) and by the numerical method (the dashed lines) along the coordinates lines 11 = 80* (1) and 100" 
(2), located on the lateral edge is shown in Fig. 3. Good agreement of the results is obtained in the neighbourhood 
of the divergence line. On the other sections of the body, the analytical investigation is of a qualitative nature. 

We also present the results of a numerical investigation of the flow and heat-transfer properties in the case of 
the compress~le gas flow around a spherically blunted circular cone with an aperture angle 0c = 10" at an angle 
of attack (x = 10" when 34. = 5.96, ~/= 1.4. The influence of a number of governing parameters on the development 
of three-dimensional flows can be analysed using the computational results obtained. 

The boundary condition on the surface for the heat transfer equation was specified as 

qw + qe  = O, qw R = ~oTw 4 (5.1) 

that is, the re-radiation of energy on the surface occurs in accordance with the Stefan-Boltzmann law. The Bollzmann 
number B .  = p**~**ct,/(ec~T3), which appears in boundary condition (5.1), is determined by the gas parameters in 
the free stream and IJae specified e. 

In the numerical calculations, the boundary condition (5.1) was linearizod using Newton's method. 

S~:~ r=t 

! 6 # 

! l  

//// 
, H/I,I 

I 
¢ 

Fig. 3. 
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The external inviscid flow field was specified in accordance with the data presented earlier (see the foomote on 
p. 106). The distribution of the velocity components of this field was recalculated to yield the components of the 
boundary-layer system of coordinates. The field of the isobars on the surface of the body is shown in Fig. 4a-c as 
projections onto the vertical and horizontal planes and solely for those parts where the flow around the body is 
supersonic. Local pressure maxima occur on the windward divergence line in the plane of symmetry. In Fig. 4a 
the packing of the isobars on the windward side is noticeable as well as the decrease in its values on departing 
from this line onto the leeward side of the cone, where domains of minimum values are located in the plane of 
symmetry. 

Numerical investigations were carr[.'ed out for laminar and turbulent regimes at a height H = 35 km and s = 0.8 
for the case of an equilibrium surface radiation temperature T,,,, that is, condition (5.1). In the case of the laminar 
regime, the distributions of the isolines of the values of T,w are monotonic on both the windward and leeward sides. 
The temperature falls as 11 increases from the windward plane of symmetry to the leeward plane of symmeUy and 
the values of T,w also decrease downstream along the flow. In the cross-section Z = 10, the difference between 
the temperature values of the windward and leeward sides increases as z increases and exceeds 120 K. 

A version of the calculation, which corresponds to a turbulent flow with Reynolds number Re.  = 2.5 x 107 is 
shown in Fig. 5a-c: (a) shows the projections of the isolines of Tn~ onto the vertical plane and Co) shows the 
projections onto the horizontal plane of the windward side and (c) shows the projections onto the horizontal plane 
of the leeward side. The values of T,w differ from the corresponding values for the laminar regime by more than 
200 K and, moreover, there is non-monotonicity in the distributions of T,w and qw on the windward side of the 
initial segment of the flow. The maximum values of T,~ occur on the spreading line which coincides with the line 
of symmetry of the windward side; the wall temperature on the leeward side is more than 200 K less than the values 
on the windward side. 

The magnitude of the displacement thickness of the boundary layer 8" characterizes the inverse effect of the 
layer on the external inviscid flow. In a number of cases, the value of ~ can be determined in order to estimate 
the values of 8". On the windward side, it maintains an almost constant value, but on passing across the lateral 
edge, its values increase sharply. A general increase in the values of ~ is noted on moving downstream for fixed 
values of ~. 

The greatest values of ~ occur on the leeward side. According to the inviscid data, the greatest tapering of the 
entropy layer is noted in those zones where a minimum in the thickness of the boundary layer is observed. For 
instance, in the case of the computed values of the parameters when ~ >~ 15.0, there are segments in the flow where 
the displacement thickness of the boundary layer increases appreciably and it becomes necessary to take account 
of the vortex effect. The range of change in the parameters of the problem over which the entropy layer is swallowed 
by the boundary layer is determined from the calculated values of the boundary layer and the inviscid flow field 
[12, 13]. In the case of the specified parameters under consideration, the effect of the variability of the entropy 
along the outer edge of the boundary layer starts to have an effect at large distances from the bluntness (z t> 15) 
and the vortex effect on the heat transfer falls off as the Reynolds number Re. increases. 
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The distn'bution of the total local friction % on the surface is characterized by the coefficient Cf,, = 2%~/(p.~).2). 
The distributions of the values of Cf,. along the lines T = const as a function of ~ have a form similar to the 
distributions of T,~. The greatest values of the local friction occur along a windward divergence line )1 = 0. Along 
the lateral edge 1] -- 80-90 ° and the changes in the friction ~ are insignificant. On the leeward side of the cone 
the values of Cf,. do:rease monotonically downstream for all of the curves. Moreover, their fall offis the most 
intense in the plane of symmetry 11 = 180 °. Here, the values of Cf,. are minimal on the convergence line. 

The results obtained show that the maximum values of the heat flux qw and the local friction %w mainly occur 
along divergence line,s and the minimum values correspond to the convergence lines on the body surface. 
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